Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I.
نویسندگان
چکیده
Achromobacter protease I is a lysine-specific serine protease that Achromobacter lyticus M497-1 extracellularly secretes. The structural aspects necessary for the protease to function were investigated by means of site-directed mutagenesis to identify the constituents of the catalytic triad and the amino acid residue responsible for lysine specificity. The precursor molecules, which were produced by substitution of His-57, Asp-113, or Ser-194 for alanine, could not be converted to the mature form. In contrast, a precursor of a mutant in which either His-56 or Ser-193 is converted to alanine was perfectly processed autocatalytically and attained full protease activity. Substitution of Glu-190, one of the two candidates for determining lysine specificity, to glutamine, aspartic acid, or leucine had no or little effect on both proteolytic activity and substrate specificity. However, the kinetic parameters were subtly different from one another, depending on the nature of substituents in these mutants. The substitution of the other candidate, Asp-225, for asparagine or leucine resulted in the failure of maturation to the active forms. However, the precursor of the D225E mutant slowly matured and was essentially inactive. The observed reduction of protease activity is largely due to a decrease in the affinity of lysine to the protease. These results suggest that His-57, Asp-113, and Ser-194 are the three constituents of the catalytic triad in Achromobacter protease I and that Asp-225 plays a critical role in restricted substrate specificity as a lysyl endopeptidase.
منابع مشابه
Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation.
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations ...
متن کاملThe primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease.
The complete amino acid sequence of Achromobacter lyticus protease I (EC 3.4.21.50), which specifically hydrolyzes lysyl peptide bonds, has been established. This has been achieved by sequence analysis of the reduced and S-carboxymethylated protease and of peptides obtained by enzymatic digestion with Achromobacter protease I itself and Staphylococcus aureus V8 protease and by chemical cleavage...
متن کاملStructure of the Human Cytomegalovirus Protease Catalytic Domain Reveals a Novel Serine Protease Fold and Catalytic Triad
Proteolytic processing of capsid assembly protein precursors by herpesvirus proteases is essential for virion maturation. A 2.5 A crystal structure of the human cytomegalovirus protease catalytic domain has been determined by X-ray diffraction. The structure defines a new class of serine protease with respect to global-fold topology and has a catalytic triad consisting of Ser-132, His-63, and H...
متن کاملCloning, nucleotide sequence, and expression of Achromobacter protease I gene.
Achromobacter protease I (API) is a lysine-specific serine protease which hydrolyzes specifically the lysyl peptide bond. A gene coding for API was cloned from Achromobacter lyticus M497-1. Nucleotide sequence of the cloned DNA fragment revealed that the gene coded for a single polypeptide chain of 653 amino acids. The N-terminal 205 amino acids, including signal peptide and the threonine/serin...
متن کاملThe crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 269 25 شماره
صفحات -
تاریخ انتشار 1994